DOING RESEARCH/DISCERNING THE WORTH of RESEARCH

Thomas S. Parish, Ph.D.

IV <u>Internal Validity</u> refers to the level of <u>CONTROL</u> that the investigator has over the independent variables, plus other variables (e.g., antecedent variables, confounding variables) too.

EV <u>External Validity</u> refers to the level of <u>GENERAL-</u> <u>IZABILITY</u> of the reported data relative to other settings and/or populations.

HVHeuristic Valuerefers to the level of interest,
perceived importance, and/or timeliness of the reportedfindings for the readership and/or theviewership.

	IV	EV	HV
Laboratory experiments	Hi	Lo	??
Field experiments	Mod	Mod	??
Nat. exp. Or field studies (e.g., The "BIG EVENT)	Lo	Mod-Hi	??
Case studies	Lo	Lo	??

What is the primary reason that studies like these are conducted and/or reported? Why should you conduct and/or read studies/experiments such as these?

Doing/Discerning Research--2

The "TIME" Dimension in Doing "Good Research"

Retrospective research:	T1 X	T2 O	Т3	
Cross-sectional research	XO 1			
	XO2			
	XO3			
Longitudinal research	X01	XO2		
CS/L Research	AO	AX	AO	A A0
	BO	B	BO	BX BO

CS/L Research-type studies is likely the best choice for RT/CR-type researchers!

Campbell & Stanley's Possible Sources of Invalidity:

Pre-Experimental Designs:

1.	One-shot case studies	XO
2.	One-group pretest-posttest	studies OXO
3.	Static-group-type studies	AXO
		BO
		Doing/Discerning Research3

True Experimental Designs:

4.	Pretest-posttest control		
	group-type studies	R	AOXO
		R	BOO
5.	Solomon Four Group-		
	type studies	R	AOXO
		R	BOO
		R	CXO
		R	DO
6.	Posttest-only control		
	Group-type studies	R	AXO
		R	BO

Notably, Design #6 is the most valid design, with the fewest encumbrances, and is the recommended design for CT/RTtype researchers who wish to report reasonably valid findings to its readership/viewership.

R = Randomly assigned A, B, C, D = Individual groups X = Treatment O = Observation --+ = No treatment and/or no observation